
Part I

Data Structures

8



Chapter 2

Linked Lists

Linked lists can be thought of from a high level perspective as being a series
of nodes. Each node has at least a single pointer to the next node, and in the
last node’s case a null pointer representing that there are no more nodes in the
linked list.

In DSA our implementations of linked lists always maintain head and tail
pointers so that insertion at either the head or tail of the list is a constant
time operation. Random insertion is excluded from this and will be a linear
operation. As such, linked lists in DSA have the following characteristics:

1. Insertion is O(1)

2. Deletion is O(n)

3. Searching is O(n)

Out of the three operations the one that stands out is that of insertion. In
DSA we chose to always maintain pointers (or more aptly references) to the
node(s) at the head and tail of the linked list and so performing a traditional
insertion to either the front or back of the linked list is an O(1) operation. An
exception to this rule is performing an insertion before a node that is neither
the head nor tail in a singly linked list. When the node we are inserting before
is somewhere in the middle of the linked list (known as random insertion) the
complexity is O(n). In order to add before the designated node we need to
traverse the linked list to find that node’s current predecessor. This traversal
yields an O(n) run time.

This data structure is trivial, but linked lists have a few key points which at
times make them very attractive:

1. the list is dynamically resized, thus it incurs no copy penalty like an array
or vector would eventually incur; and

2. insertion is O(1).

2.1 Singly Linked List

Singly linked lists are one of the most primitive data structures you will find in
this book. Each node that makes up a singly linked list consists of a value, and
a reference to the next node (if any) in the list.

9



CHAPTER 2. LINKED LISTS 10

Figure 2.1: Singly linked list node

Figure 2.2: A singly linked list populated with integers

2.1.1 Insertion

In general when people talk about insertion with respect to linked lists of any
form they implicitly refer to the adding of a node to the tail of the list. When
you use an API like that of DSA and you see a general purpose method that
adds a node to the list, you can assume that you are adding the node to the tail
of the list not the head.

Adding a node to a singly linked list has only two cases:

1. head = ∅ in which case the node we are adding is now both the head and
tail of the list; or

2. we simply need to append our node onto the end of the list updating the
tail reference appropriately.

1) algorithm Add(value)
2) Pre: value is the value to add to the list
3) Post: value has been placed at the tail of the list
4) n ← node(value)
5) if head = ∅
6) head ← n
7) tail ← n
8) else
9) tail.Next ← n
10) tail ← n
11) end if
12) end Add

As an example of the previous algorithm consider adding the following se-
quence of integers to the list: 1, 45, 60, and 12, the resulting list is that of
Figure 2.2.

2.1.2 Searching

Searching a linked list is straightforward: we simply traverse the list checking
the value we are looking for with the value of each node in the linked list. The
algorithm listed in this section is very similar to that used for traversal in §2.1.4.



CHAPTER 2. LINKED LISTS 11

1) algorithm Contains(head, value)
2) Pre: head is the head node in the list
3) value is the value to search for
4) Post: the item is either in the linked list, true; otherwise false
5) n ← head
6) while n 6= ∅ and n.Value 6= value
7) n ← n.Next
8) end while
9) if n = ∅
10) return false
11) end if
12) return true
13) end Contains

2.1.3 Deletion

Deleting a node from a linked list is straightforward but there are a few cases
we need to account for:

1. the list is empty; or

2. the node to remove is the only node in the linked list; or

3. we are removing the head node; or

4. we are removing the tail node; or

5. the node to remove is somewhere in between the head and tail; or

6. the item to remove doesn’t exist in the linked list

The algorithm whose cases we have described will remove a node from any-
where within a list irrespective of whether the node is the head etc. If you know
that items will only ever be removed from the head or tail of the list then you
can create much more concise algorithms. In the case of always removing from
the front of the linked list deletion becomes an O(1) operation.



CHAPTER 2. LINKED LISTS 12

1) algorithm Remove(head, value)
2) Pre: head is the head node in the list
3) value is the value to remove from the list
4) Post: value is removed from the list, true; otherwise false
5) if head = ∅
6) // case 1
7) return false
8) end if
9) n ← head
10) if n.Value = value
11) if head = tail
12) // case 2
13) head ← ∅
14) tail ← ∅
15) else
16) // case 3
17) head ← head.Next
18) end if
19) return true
20) end if
21) while n.Next 6= ∅ and n.Next.Value 6= value
22) n ← n.Next
23) end while
24) if n.Next 6= ∅
25) if n.Next = tail
26) // case 4
27) tail ← n
28) end if
29) // this is only case 5 if the conditional on line 25 was false
30) n.Next ← n.Next.Next
31) return true
32) end if
33) // case 6
34) return false
35) end Remove

2.1.4 Traversing the list

Traversing a singly linked list is the same as that of traversing a doubly linked
list (defined in §2.2). You start at the head of the list and continue until you
come across a node that is ∅. The two cases are as follows:

1. node = ∅, we have exhausted all nodes in the linked list; or

2. we must update the node reference to be node.Next.

The algorithm described is a very simple one that makes use of a simple
while loop to check the first case.



CHAPTER 2. LINKED LISTS 13

1) algorithm Traverse(head)
2) Pre: head is the head node in the list
3) Post: the items in the list have been traversed
4) n ← head
5) while n 6= 0
6) yield n.Value
7) n ← n.Next
8) end while
9) end Traverse

2.1.5 Traversing the list in reverse order

Traversing a singly linked list in a forward manner (i.e. left to right) is simple
as demonstrated in §2.1.4. However, what if we wanted to traverse the nodes in
the linked list in reverse order for some reason? The algorithm to perform such
a traversal is very simple, and just like demonstrated in §2.1.3 we will need to
acquire a reference to the predecessor of a node, even though the fundamental
characteristics of the nodes that make up a singly linked list make this an
expensive operation. For each node, finding its predecessor is an O(n) operation,
so over the course of traversing the whole list backwards the cost becomes O(n2).

Figure 2.3 depicts the following algorithm being applied to a linked list with
the integers 5, 10, 1, and 40.

1) algorithm ReverseTraversal(head, tail)
2) Pre: head and tail belong to the same list
3) Post: the items in the list have been traversed in reverse order
4) if tail 6= ∅
5) curr ← tail
6) while curr 6= head
7) prev ← head
8) while prev.Next 6= curr
9) prev ← prev.Next
10) end while
11) yield curr.Value
12) curr ← prev
13) end while
14) yield curr.Value
15) end if
16) end ReverseTraversal

This algorithm is only of real interest when we are using singly linked lists,
as you will soon see that doubly linked lists (defined in §2.2) make reverse list
traversal simple and efficient, as shown in §2.2.3.

2.2 Doubly Linked List

Doubly linked lists are very similar to singly linked lists. The only difference is
that each node has a reference to both the next and previous nodes in the list.



CHAPTER 2. LINKED LISTS 14

Figure 2.3: Reverse traveral of a singly linked list

Figure 2.4: Doubly linked list node



CHAPTER 2. LINKED LISTS 15

The following algorithms for the doubly linked list are exactly the same as
those listed previously for the singly linked list:

1. Searching (defined in §2.1.2)

2. Traversal (defined in §2.1.4)

2.2.1 Insertion

The only major difference between the algorithm in §2.1.1 is that we need to
remember to bind the previous pointer of n to the previous tail node if n was
not the first node to be inserted into the list.

1) algorithm Add(value)
2) Pre: value is the value to add to the list
3) Post: value has been placed at the tail of the list
4) n ← node(value)
5) if head = ∅
6) head ← n
7) tail ← n
8) else
9) n.Previous ← tail
10) tail.Next ← n
11) tail ← n
12) end if
13) end Add

Figure 2.5 shows the doubly linked list after adding the sequence of integers
defined in §2.1.1.

Figure 2.5: Doubly linked list populated with integers

2.2.2 Deletion

As you may of guessed the cases that we use for deletion in a doubly linked
list are exactly the same as those defined in §2.1.3. Like insertion we have the
added task of binding an additional reference (Previous) to the correct value.



CHAPTER 2. LINKED LISTS 16

1) algorithm Remove(head, value)
2) Pre: head is the head node in the list
3) value is the value to remove from the list
4) Post: value is removed from the list, true; otherwise false
5) if head = ∅
6) return false
7) end if
8) if value = head.Value
9) if head = tail
10) head ← ∅
11) tail ← ∅
12) else
13) head ← head.Next
14) head.Previous ← ∅
15) end if
16) return true
17) end if
18) n ← head.Next
19) while n 6= ∅ and value 6= n.Value
20) n ← n.Next
21) end while
22) if n = tail
23) tail ← tail.Previous
24) tail.Next ← ∅
25) return true
26) else if n 6= ∅
27) n.Previous.Next ← n.Next
28) n.Next.Previous ← n.Previous
29) return true
30) end if
31) return false
32) end Remove

2.2.3 Reverse Traversal

Singly linked lists have a forward only design, which is why the reverse traversal
algorithm defined in §2.1.5 required some creative invention. Doubly linked lists
make reverse traversal as simple as forward traversal (defined in §2.1.4) except
that we start at the tail node and update the pointers in the opposite direction.
Figure 2.6 shows the reverse traversal algorithm in action.



CHAPTER 2. LINKED LISTS 17

Figure 2.6: Doubly linked list reverse traversal

1) algorithm ReverseTraversal(tail)
2) Pre: tail is the tail node of the list to traverse
3) Post: the list has been traversed in reverse order
4) n ← tail
5) while n 6= ∅
6) yield n.Value
7) n ← n.Previous
8) end while
9) end ReverseTraversal

2.3 Summary

Linked lists are good to use when you have an unknown number of items to
store. Using a data structure like an array would require you to specify the size
up front; exceeding that size involves invoking a resizing algorithm which has
a linear run time. You should also use linked lists when you will only remove
nodes at either the head or tail of the list to maintain a constant run time.
This requires maintaining pointers to the nodes at the head and tail of the list
but the memory overhead will pay for itself if this is an operation you will be
performing many times.

What linked lists are not very good for is random insertion, accessing nodes
by index, and searching. At the expense of a little memory (in most cases 4
bytes would suffice), and a few more read/writes you could maintain a count
variable that tracks how many items are contained in the list so that accessing
such a primitive property is a constant operation - you just need to update
count during the insertion and deletion algorithms.

Singly linked lists should be used when you are only performing basic in-
sertions. In general doubly linked lists are more accommodating for non-trivial
operations on a linked list.

We recommend the use of a doubly linked list when you require forwards
and backwards traversal. For the most cases this requirement is present. For
example, consider a token stream that you want to parse in a recursive descent
fashion. Sometimes you will have to backtrack in order to create the correct
parse tree. In this scenario a doubly linked list is best as its design makes
bi-directional traversal much simpler and quicker than that of a singly linked



CHAPTER 2. LINKED LISTS 18

list.


